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SUMMARY 

The procedure proposed is based on the solution by finite difference means of a set of Laplace’s equations, by 
the application of a relaxation method. 

The curvilinear orthogonal grid so generated is fitted to a 2-D physical domain with closed boundary and 
the contribution of the present work consists in the arbitrary choice of grid points on two adjacent boundaries, 
in order to achieve the desired density of grid points where the geometry of the boundaries varies rapidly. 

The method proposed is rapid and stable. Some characteristic examples are finally presented. 
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INTRODUCTION 

In recent years considerable work has been reported on the generation of body- or boundary-fitted 
curvilinear co-ordinate systems, the great advantage of which is the easy and accurate description 
of boundary conditions in the case of complex geometries. In some cases it is desirable that the 
body-fitted curvilinear co-ordinate system also be orthogonal because of the simplicity such a 
system offers in the expression of differential equations. 

The existing methods for the generation of a curvilinear body-fitted co-ordinate system are 
based on two different principles: conformal mapping and the solution of differential equations of 
elliptic type. Our interest will be principally focused on the second case where one can distinguish 
two possibilities; to take the natural co-ordinates to be solutions of Laplace’s equations in the 
physical domain’ or to reverse this procedure by taking the physical co-ordinates to be solutions in 
the transformed plane of a linear elliptic ~ y s t e r n . ~ - ~  

Thompson et aL5 describe a general method for the generation of non-dimensional co-ordinate 
systems in which the location of mesh lines can be controlled by the use of ‘packing’ functions to 
accommodate rapid variations of the field. In their work the natural co-ordinates were considered 
as solutions of an elliptic differential system in the physical plane; their method was also extended 
to multiconnected regions. 

Potter and Tuttle6 and Davies7 have developed numerical procedures for the orthogonalization 
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of a discrete non-orthogonal2-D co-ordinate system, preserving one set of the non-orthogonal co- 
ordinate lines. 

Work on orthogonal or non-orthogonal curvilinear body-fitted systems is also reported with 
some possibilities for controlling the distribution of mesh lines by the introduction of forcing or 
weighting functions or of source terms or of a scaling c o n ~ t a n t . ~ - ’ ~  In these cases, and especially in 
the case of orthogonal curvilinear systems, with the proposed methods it is not possible to 
arbitrarily choose the grid points on the boundaries. 

Our task was to generate a curvilinear orthogonal 2-D co-ordinate system with arbitrarily 
chosen grid points on two adjacent boundaries. As in most of the cases the geometry of one or two 
of the boundaries changes rapidly and on the others the geometry changes smoothly, with this 
method, the grid obtained is generally very satisfactory. 

Another advantage of this method is that it can also be applied in the case of external flows by 
dividing the domain into two subdomains and finally matching the two subgrids obtained, as is 
also performed by Tatum.” This method can also be applied to multiconnected regions. 

THEORETICAL BASIS-FINITE-DIFFERENCE EQUATIONS 

Let (x, y) be the Cartesian co-ordinate system in the physical 2-D domain and (5, y) the desired 
orthogonal curvilinear system; the set of lines 5 = constant and y = constant form a grid which 
must be orthogonal in the physical plane. It is known that the solution of a set of Laplace’s 
equations in the physical domain (x, y): 

and 

corresponds to a set of Cp = constant and t+h = constant lines which are everywhere orthogonal 
between them. If we replace the I#J parameter by 5 and the II/ by q, it is clear that by solving the 
Laplace’s equations (1 )  and (2) the desired curvilinear orthogonal grid is produced; this means that 
the 5 = 5 (x, y) = constant and y = q(x, y) = constant lines are orthogonal between them. Also by 
taking the physical boundaries of the domain (x, y )  as solutions of the equations (1) and (2), the so 
generated orthogonal curvilinear system is body- or boundary-fitted. 

Expressing the physical co-ordinates x and y as functions of the 5 and y, i.e. x = x(5,y) and 
y = y( t ,q ) ,  the above Laplace’s equations (1) and (2), taking into account the orthogonality of 
the ( = constant and q = constant lines, are equivalent to the Laplace’s equations: 

The set of equations (3) and (4) is equivalent to the set (1) and (2), taking into account the 
orthogonality conditions of the 5 = constant and q = constant lines. 

Introducing a scaling factor h in the set of Laplace’s equations ( 3 )  and (4) which is equal to the 
ratio of the scale factors h, and h, associated with the orthogonal co-ordinates 5: and y, respectively, 
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the following set of equations is obtained: 

For different values of the h factor, an infinity of curvilinear orthogonal grids can be generated for a 
specified physical domain. As is developed in Reference 9, integrating the equations (3') over 
control volumes centred on the 4 - q grid points, the following finite-difference equation is 
obtained: 

ApXp = A E X E  + AwXw + A S X S  + A N X ,  ( 5 )  

where the grid points in the (x, y )  domain, surrounding the grid-point P, are characterized by the 
subscripts E, W, N and S, with 

1 
A ,  = 

A, = 

1 
A , = -  

A, = 
(VN - yS) (yN - yP)h2 

A p = A E  + A, + A N  + As 

(4E - t W ) ( t E  - t P )  ( S E  - <W)(<P - 4 W )  

1 1 

(VN - 1?S)(yP - yS)h2 

From the differential equation (4) ,  governing the Y location of the grid-points, applying the same 
procedure, the following similar finite-difference equation is obtained: 

A p Y p  = A E Y E  + AwYw + A N Y N  + A S Y S  (6) 
The finite-difference equations (5) and (6) are solved numerically by applying an iterative relaxation 
method with the appropriate boundary conditions, starting from an initial guess for the solution. 

BOUNDARY CONDITIONS-INITIAL SOLUTION 

The physical boundaries of the (x,y) domain must be grid lines; this means that every pair of 
opposite boundaries corresponds to a 4 = constant or y = constant value (Dirichlet boundary 
conditions). For simplicity, as is seen in Figure 1 the value q = 0 is associated with the boundary 
AB the value y = 1 is associated with DC, the value ( = 0 is associated with AD and the value 4 = 1 
is associated with BC. 

A restriction is already apparent; the boundaries of the physical domain must, as solutions of 
Laplace's equations, be perpendicular between them at the junction points A, B, C and D (Figure 1). 
In some cases this restriction can be easily accomplished, if it is not initially, by extending the 
domain with a fictitious boundary which would be perpendicular to the adjacent boundaries. 

Up to this point the same procedure has been adopted as in previous work.',' ' The principal 
difference between the earlier work and the proposed procedure is that previously the { = 
constant and y = constant lines have had a predetermined set of values and in the present case 
the final { and q values are obtained by the numerical procedure. 

As is evident, one grid point on the boundary, the intersdction of a < = tl  line with the boundary, 
cannot be previously known. By the use of 'forcing' or 'packing' functions8," it is possible to 
control the density of grid points, but again the grid points are not precisely predetermined on any 
one of the boundaries. 
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't 

Figure 1. Definition of physical domain 

In the present work our task is to find the 5 (and/or the y) values of the 5 = constant (and/or y- 
constant) lines which start from arbitrarily chosen points on one of the opposite boundaries (AD of 
Figure 1). 

The corresponding grid point on the opposite boundary (BC in our case) will be obtained from 
the numerical solution of the problem, which means that they are not previously known. The same 
procedure can be applied to the adjacent boundaries, that is to choose arbitrarily the grid points on 
one of them (AB or CD of Figure 1). Referring to Figure 1, a number of grid points P can be 
arbitrarily chosen on the boundary AD and the corresponding values of y = y1 will be determined. 

NUMERICAL PROCEDURE 

The numerical procedure must start from an initial solution, i.e. an initial guess for the physical co- 
ordinates (x, y) of the grid-points and an initial distribution of the 5 and y values. It is evident that 
the arbitrarily chosen grid points on the adjacent boundary (say on the AD boundary of Figures 1 
and 2)  must also be points of the initial solution. 

Suppose that we wish to obtain the y = constant lines starting from arbitrarily chosen points on 
the boundary AD ( I  = 1, Figure 2). These lines have, at the beginning of the procedure, an initial 
guess for the y values which in general is not the correct one (for the J = 1 boundary a similar 
procedure is followed for the < = constant lines). 

The grid points (2 ,J )  must normally be located at the normals to the boundary from the 
corresponding (1 ,  J )  points. Therefore for the next iteration the new grid points (2, J )  (points P,(2, J )  
on Figure 2) are taken as the intersection point of the previous I = 2 line (taken as a cubic spline) 
with the normals to the boundary from the fixed (1,J) points. 

The grid points on the opposite boundary (the line I = NI in Figure 2) are taken as the 
intersection points of the boundary with the normals to the boundary from the points (NI = 1, J )  
(Figure 2). 

The finite-difference equations (5 )  and (6) are solved for all the internal nodes of the grid (for I = 2 
to I = NI - I and for J = 2 to J = NJ - 1). The new physical co-ordinates X ,  and Yp of the grid 
points are then obtained. As the y (and/or the <) values are not necessarily the correct ones, the co- 
ordinates (x, y )  obtained for the grid points of the I = 2 line are not on the normals to the boundary 
from the corresponding points, as they would be if the y value was the correct one. This can be 
expressed by the fact that the inclination of the (1 ,  J) ,  (2, J )  segment is not the same as that of the 
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X 
Figure 2. Definition of the boundary conditions 

normal, which means that the angle pN is not equal to the angle po of the normal (as in Figure 2, the 
angles are taken with respect to the horizontal direction). The correction to the q value is taken 
proportional to the difference 6p(J) = po(J) - p,(J). 

In our examples we take: 
W J )  = C , 6 d J )  (7) 

with 6p in radians and C, the proportionality factor which was taken as C, = 0.0005C with C 2 1. 
The influence of the C value on the procedure is commented on in the last paragraph of the 
examples section. 

The new value of qN of the q ( J )  = constant line is then obtained from its previous value qo(J)  
using the relation 

The minus sign is justified by the remark that if the q-values corresponding to a grid point and to 
the points surrounding it are, say, greater than the correct ones, the point (2, J )  in Figure 2, taken by 
the finite-difference equations, will normally be located to the right of the normal, near the 
boundary which corresponds to the value q = 1, which means that (po(J) - p,(J)) > 0 (as is shown 
in Figure 2). 

For the test of convergence it is required that the maximum value of all the 6p(J) is less than a 
prespecified small number. In our examples it is taken as 

th(J) = - 6Y(J)  (8) 

max [6p(J)] < 1.6 x lo-’ rad N 0.9’ = 6pmin 

The convergence of the X, and Y, co-ordinates is a result of the convergence of the q (and 5) values, 
and as the deviation 6q diminishes the S X ,  and SY, deviations also diminish. In the examples 
presented the maximum deviation 6 X ,  and SY, at the end of the solution was of the order of 
dX, ‘v O.O018L, where L is the maximum dimension of the domain of interest. 

COMPUTATIONAL DETAILS 

In the case of points of discontinuity on the boundaries we have to distinguish two cases; the 
discontinuity is on the boundary with the arbitrarily chosen grid points or on the opposite 



250 D. E. PAPANTONIS AND N. A. ATHANASSIADIS 

IJ Predermined grid-points on the poundary 

Figure 3. Boundary conditions in discontinuity points: (a) on the boundary where the grid-points are predetermined; 
(b) on the opposite boundary 

boundary. In the first case (Figure 3(a)) the g-line (or c-line) must leave the boundary at the 
discontinuity point P, by the bisectrix of the two tangents (this is equivalent to the 4 = constant 
lines in the singular points of potential flow). 

In the second case (Figure 3(b)) the boundary is smoothed by fitting a circle of radius R, tangent 
to it on both sides of discontinuity point P,. This procedure was proposed by Antonopo~los,~ who 
found that an optimum value of R, is 0-05L. In our examples the value of R, was taken of the order 
of 0.0125L. 

As far as the initial co-ordinates (Xp, Y,) of the grid points are concerned, the following simple 
method was employed: from the fixed chosen points on the boundary lines were drawn straight 
lines. These lines were divided into (NI-I) segments, the last point being on the opposite 
boundary. 

The initial guess of the values of the t = constant and y = constant lines was chosen arbitrarily 
also between the limit values 0 and 1, making a reasonable distribution according to the case. 

In the examples presented here, with the initial guesses for the (X,, Y,) co-ordinates and the g 
and y~ values, at the beginning of the calculations the maximum deviation 6q, was of the order of 
even 70" and the maximum deviation 6X,, SY, was of the order of 0.05L. This proves that no 
special attention was paid to the initial guess for the solution. 

The factor h was calculated as proposed by Antonopo~los,~ that is 

L h = A  

where L, is the total length of all the 5 =constant lines and L, is the total length of all the 
g = constant lines. In the examples presented, after a number of iterations the changes of h value 
were small and the h value was not recalculated any more. 

L, 

EXAMPLES 

To illustrate the capabilities of the proposed method for the body-fitted orthogonal curvilinear, 
three characteristic examples are presented. 

In the first a 2-D channel is concerned and Figure 4(a) shows the initial guess of the solution. The 
values of constant lines were first taken by equally dividing the space between 0 and 1. In 
Figure 4(b) is shown the solution obtained for the curvilinear (21 x 21) grid, with the final values of 
the y = constant lines. In order to test the method the initial guess of the g values was taken with all 
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L 

Figure 4. (21 x 21) grid generation into a curved channel: (a) initial solution; (b) obtained orthogonal curvilinear grid 

the '1 values bigger than those resulting from the first run of the program. The result is very 
satisfactory, as the bigger fractional change of all the '1 values between the two runs was of the order 
of 3 per cent. The grid points obtained from the two different runs of the program were practically 
identical. The grid points on the boundaries AD and AB were predetermined. 

In Figure 5(a) is shown the initial solution for the grid in the blade-to-blade domain of a 
turbomachine and in Figure 5(b) the curvilinear orthogonal (33 x 21) grid obtained. In this case 
the grid points on the boundaries AB and AD were predetermined. It can be pointed out that the 
obtained distribution of grid points on the boundary opposite to AB, i.e. the boundary BC, is not 
the desirable one because of the abrupt change of geometry of the boundary BC too. 

a 

Figure 5 (33 x 21) grid generation in a blade-to-blade domain, (a) initial solution. (b) obtained orthogonal curvilinear 
grid 
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Figure 6. (37 x 42) orthogonal curvilinear grid around a NACA-0012 wing section with zero angle of incidence 

Figure 7. (37 x 42) orthogonal curvilinear grid around a NACA-0012 wing section with 8" angle of incidence 

In Figure 6 is shown the (37 x 42) grid obtained around a NACA-0012 wing section with zero 
angle of incidence. This grid is the result of the superposition, as explained in the introduction, of 
two subgrids; one containing the upper boundary of the wing section and the other containing its 
lower boundary. As was expected, the two grids are symmetrical about the axis of symmetry. In 
Figure 7 is shown the grid obtained with an angle of incidence equal to 8" and Figure 8 is an 
amplification of this grid around the leading edge of the wing section. 

Thc two subdomains are obtained by extending the chord of the wing section by-Jwo parabolas, 
one from the leading edge to the front boundary and the other from the trailing edge to the rear 
boundary. 
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Figure 8. Amplification of the (37 x 42) grid around the leading edge of the NACA-OOI2 wing section with 8" angle of 
incidence 
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NO. of iterations*lo-2 

Figure 9. Speed of  convergence for the examples presented 

In Figure 9 is drawn the change of the maximum 6p  deviation with the number of iterations 
obtained in the case of the presented examples. The C coefficient of the relation (7) was taken equal 
to the value marked as parameter for max(6q) > Cdp,,,, and equal to 1 (C = I )  for max ( 6 9 )  < 
Cdq,,,. From these curves the following remark comes out; with a greater value of C the initial 
speed of convergence is greater, but ultimately the shortening of the run-time is not important; 
however, an important value of C can provoke instability of the procedure (the change Sy(J) must 
not be greater than the difference y(J) - y(J - l), or y(J) - y(J  + I)). 

CONCLUSION 

From the examples presented, it is proved that the proposed method is a general method for the 
generation of 2-D body fitted curvilinear orthogonal grids. The results are satisfactory even with 
rapidly varying density of the arbitrary grid-points on the boundary or near to points of 
discontinuity. 

LIST OF SYMBOLS 

Cartesian co-ordinates in the natural domain 
Potential function 
Stream function 
Values of the grid lines 
Scaling factor 
Coefficients of the finite-difference equations 
Number of the ( = constant lines 
Number of the y = constant lines 
Angle of the vertical to the boundary from a predetermined grid point with respect 
to the horizontal direction. 
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Angle of the actual segment of the grid with respect to the horizontal direction. 
Angular deviation 
Acceleration factor 
Deviation of the x-co-ordinate of a grid point between two iterations 
Deviation of the y-co-ordinate of a grid point between two iterations 
Smoothing radius of the boundary at the discontinuity point 
Maximum dimension of the physical domain 
Total length of all ( = constant lines 
Total length of all 9 = constant lines 
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